

HAMIBIA UNIVERSITY

OF SCIENCE AND TECHNOLOGY

FACULTY OF HEALTH, NATURAL RESOURCES AND APPLIED SCIENCES SCHOOL OF NATURAL AND APPLIED SCIENCES DEPARTMENT OF MATHEMATICS, STATISTICS AND ACTUARIAL SCIENCE

QUALIFICATION: Bachelor of Science in Applied Mathematics and Statistics	
QUALIFICATION CODE: 07BSAM	LEVEL: 6
COURSE CODE: PBT602S	COURSE NAME: Probability Theory 2
SESSION: JULY 2023	PAPER: THEORY
DURATION: 3 HOURS	MARKS: 100

SUPPLEMENTARY / SECOND OPPORTUNITY EXAMINATION QUESTION PAPER	
EXAMINER	Dr D. B. GEMECHU
MODERATOR	Prof R. KUMAR
MODERATOR:	

INSTRUCTIONS

- 1. There are 5 questions, answer ALL the questions by showing all the necessary steps.
- 2. Write clearly and neatly.
- 3. Number the answers clearly.
- 4. Round your answers to at least four decimal places, if applicable.

PERMISSIBLE MATERIALS

1. Nonprogrammable scientific calculators with no covers.

THIS QUESTION PAPER CONSISTS OF 3 PAGES (Including this front page)

Question 1 [14 marks]

5

1.1. Briefly explain the following:

1.1.2. Measure on sigma algebra
$$\sigma(S)$$
 [2]

1.1.3. Measure on a
$$\mathfrak{B}(S)$$
 algebra [2]

1.2. Show that if m and n are two measures on $\mathfrak{B}(S)$, then m+n is measure on $\mathfrak{B}(S)$, where

$$(m+n)(A) = m(A) + n(A)$$
 [4]

1.3. Let $S = \{a, b, c\}$, then find:

1.3.1. Power set,
$$\mathcal{P}(S)$$

1.3.2. Size of
$$\mathcal{P}(S)$$

Question 2 [24 marks]

2.1. Let X be a continuous random variable with p.d.f. given by

$$f(x) = \begin{cases} x + 1, & for -1 < x < 0, \\ 1 - x, & for 0 \le x < 1, \\ 0, & otherwise. \end{cases}$$

Then find cumulative density function of X.

[7]

[4]

2.2. A hole is drilled in a sheet-metal component, and then a shaft is inserted through the hole. The shaft clearance is equal to the difference between the radius of the hole and the radius of the shaft. Let the random variable X denote the clearance, in millimeters. The probability density function of X is

$$f_X(x) = \begin{cases} C(1 - x^4) & \text{for } 0 < x < 1\\ 0 & \text{otherwise} \end{cases}$$

2.2.1. Show that the value of C = 1.25.

- [3]
- 2.2.2. What is the probability that the clearance is between 0.3 mm and 0.8 mm?
- 2.2.3. If R = X + 0.3, then find the expected value of R.
- 2.3. The waiting time, in hours, between successive speeders spotted by a radar unit is a continuous random variable X with cumulative distribution function (c.d.f.)

$$F_X(x) = \begin{cases} 0 & \text{for } x < 0 \\ 1 - e^{-8x} & \text{for } x \ge 0 \end{cases}$$

Then use the c.d.f. of X to find

2.3.1.
$$P(1 < X \le 2)$$

2.3.2. the median value of
$$X$$
 [3]

Question 3 [18 marks]

3.1. Suppose that the joint p.d.f. of two continuous random variables X and Y is given by

$$f_{XY}(x,y) = \begin{cases} 12x, & 0 < y < x < 1; & 0 < x^2 < y < 1, \\ 0, & elsewhere. \end{cases}$$

Find the marginal p.d.f. of Y.

[3]

3.2. Let Y_1, Y_2 , and Y_3 be three continuous random variables with the following joint p.d.f.

$$f(y_1,y_2,y_3) = \begin{cases} 6e^{-(y_1+2y_2+3y_3)}, & for \ y_i > 0; \ (i=1,2,3), \\ 0, & elsewhere. \end{cases}$$

Then find

- 3.2.1. the marginal joint p.d.f of Y_1 and Y_3 . Hint: just find $f(y_1, y_3)$. [4]
- 3.2.2. the conditional distribution of Y_2 given $Y_1 = 1$, $Y_3 = 1$. [3]

3.2.3.
$$P(Y_2 < 2|Y_1 = 1, Y_3 = 1)$$
. [3]

3.3. If X and Y are linearly related, in the sense that Y = aX + b, where a > 0, then show that $\rho_{XY} = 1$.

QUESTION 4 [28 marks]

4.1. Let a random variable Z follows a standard normal distribution [i.e., $Z \sim N(0, 1)$] with a p.d.f given by

$$f(z) = \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}z^2} for - \infty < z < \infty$$

- 4.1.1. Show that the moment generating function of Z is given by $M_Z(t) = e^{\frac{1}{2}t^2}$. [8]
- 4.1.2. If $X \sim N(\mu, \sigma^2)$ and $Z = \frac{X \mu}{\sigma}$, then show that the moment generating function of X is
 - $M_X(t)=e^{t\mu+\frac{1}{2}t^2\sigma^2}$. Hint: use the moment generating function of Z obtained above. [6]
- 4.1.3. Find the cumulant generating function of X and hence find the first cumulant. [5]
- 4.2. Let $X_1, X_2, ..., X_n$ be independently distributed with normal distribution with mean μ_k and variance σ_k^2 , thus, $X_k \sim N(\mu_k, \sigma_k^2)$. If $Y = \sum_{i=1}^n X_i$,
 - 4.2.1. Find the characteristics function of Y. Hint: $\phi_{X_k}(t) = e^{it\mu \frac{t^2\sigma^2}{2}}$ [7]
 - 4.2.2. Use the properties of characteristics function to comment on the distribution of Y. [2]

QUESTION 5 [26 marks]

5.1. Let Y be continuous random variable with a probability density function f(y) > 0. Also, let U = h(Y). If h is increasing on the range of a given random variable, then show that [6]

$$f_U(u) = f_Y \left(h^{-1}(u)\right) \frac{d}{du} h^{-1}(u)$$

5.2. Let X_1 and X_2 be independent random variables with the joint probability density function given by

$$f(x_1, x_2) = \begin{cases} e^{-(x_1 + x_2)}, & \text{if } x_1 > 0; \ x_2 > 0, \\ 0, & \text{otherwise.} \end{cases}$$

Find the joint probability density function of $Y_1 = X_1 + X_2$ and $Y_2 = \frac{X_1}{X_1 + X_2}$ [10]

=== END OF PAPER===
TOTAL MARKS: 100